Lidgren.Network.NetBigInteger.Equals C# (CSharp) Метод

Equals() публичный Метод

public Equals ( object obj ) : bool
obj object
Результат bool
        public override bool Equals(
			object obj)
        {
            if (obj == this)
                return true;

            NetBigInteger biggie = obj as NetBigInteger;
            if (biggie == null)
                return false;

            if (biggie.m_sign != m_sign || biggie.m_magnitude.Length != m_magnitude.Length)
                return false;

            for (int i = 0; i < m_magnitude.Length; i++)
            {
                if (biggie.m_magnitude[i] != m_magnitude[i])
                {
                    return false;
                }
            }

            return true;
        }

Usage Example

Пример #1
0
		public NetBigInteger ModPow(
			NetBigInteger exponent,
			NetBigInteger m)
		{
			if (m.m_sign < 1)
				throw new ArithmeticException("Modulus must be positive");

			if (m.Equals(One))
				return Zero;

			if (exponent.m_sign == 0)
				return One;

			if (m_sign == 0)
				return Zero;

			int[] zVal = null;
			int[] yAccum = null;
			int[] yVal;

			// Montgomery exponentiation is only possible if the modulus is odd,
			// but AFAIK, this is always the case for crypto algo's
			bool useMonty = ((m.m_magnitude[m.m_magnitude.Length - 1] & 1) == 1);
			long mQ = 0;
			if (useMonty)
			{
				mQ = m.GetMQuote();

				// tmp = this * R mod m
				NetBigInteger tmp = ShiftLeft(32 * m.m_magnitude.Length).Mod(m);
				zVal = tmp.m_magnitude;

				useMonty = (zVal.Length <= m.m_magnitude.Length);

				if (useMonty)
				{
					yAccum = new int[m.m_magnitude.Length + 1];
					if (zVal.Length < m.m_magnitude.Length)
					{
						int[] longZ = new int[m.m_magnitude.Length];
						zVal.CopyTo(longZ, longZ.Length - zVal.Length);
						zVal = longZ;
					}
				}
			}

			if (!useMonty)
			{
				if (m_magnitude.Length <= m.m_magnitude.Length)
				{
					//zAccum = new int[m.magnitude.Length * 2];
					zVal = new int[m.m_magnitude.Length];
					m_magnitude.CopyTo(zVal, zVal.Length - m_magnitude.Length);
				}
				else
				{
					//
					// in normal practice we'll never see ..
					//
					NetBigInteger tmp = Remainder(m);

					//zAccum = new int[m.magnitude.Length * 2];
					zVal = new int[m.m_magnitude.Length];
					tmp.m_magnitude.CopyTo(zVal, zVal.Length - tmp.m_magnitude.Length);
				}

				yAccum = new int[m.m_magnitude.Length * 2];
			}

			yVal = new int[m.m_magnitude.Length];

			//
			// from LSW to MSW
			//
			for (int i = 0; i < exponent.m_magnitude.Length; i++)
			{
				int v = exponent.m_magnitude[i];
				int bits = 0;

				if (i == 0)
				{
					while (v > 0)
					{
						v <<= 1;
						bits++;
					}

					//
					// first time in initialise y
					//
					zVal.CopyTo(yVal, 0);

					v <<= 1;
					bits++;
				}

				while (v != 0)
				{
					if (useMonty)
					{
						// Montgomery square algo doesn't exist, and a normal
						// square followed by a Montgomery reduction proved to
						// be almost as heavy as a Montgomery mulitply.
						MultiplyMonty(yAccum, yVal, yVal, m.m_magnitude, mQ);
					}
					else
					{
						Square(yAccum, yVal);
						Remainder(yAccum, m.m_magnitude);
						Array.Copy(yAccum, yAccum.Length - yVal.Length, yVal, 0, yVal.Length);
						ZeroOut(yAccum);
					}
					bits++;

					if (v < 0)
					{
						if (useMonty)
						{
							MultiplyMonty(yAccum, yVal, zVal, m.m_magnitude, mQ);
						}
						else
						{
							Multiply(yAccum, yVal, zVal);
							Remainder(yAccum, m.m_magnitude);
							Array.Copy(yAccum, yAccum.Length - yVal.Length, yVal, 0,
								yVal.Length);
							ZeroOut(yAccum);
						}
					}

					v <<= 1;
				}

				while (bits < 32)
				{
					if (useMonty)
					{
						MultiplyMonty(yAccum, yVal, yVal, m.m_magnitude, mQ);
					}
					else
					{
						Square(yAccum, yVal);
						Remainder(yAccum, m.m_magnitude);
						Array.Copy(yAccum, yAccum.Length - yVal.Length, yVal, 0, yVal.Length);
						ZeroOut(yAccum);
					}
					bits++;
				}
			}

			if (useMonty)
			{
				// Return y * R^(-1) mod m by doing y * 1 * R^(-1) mod m
				ZeroOut(zVal);
				zVal[zVal.Length - 1] = 1;
				MultiplyMonty(yAccum, yVal, zVal, m.m_magnitude, mQ);
			}

			NetBigInteger result = new NetBigInteger(1, yVal, true);

			return exponent.m_sign > 0
				? result
				: result.ModInverse(m);
		}