AIMA.Probability.Bayes.Approx.GibbsAsk.gibbsAsk C# (CSharp) Метод

gibbsAsk() публичный Метод

public gibbsAsk ( RandomVariable X, AssignmentProposition e, BayesianNetwork bn, int Nsamples ) : CategoricalDistribution
X RandomVariable
e AssignmentProposition
bn BayesianNetwork
Nsamples int
Результат CategoricalDistribution
        public CategoricalDistribution gibbsAsk(RandomVariable[] X,
                                                AssignmentProposition[] e, BayesianNetwork bn, int Nsamples)
        {
            // local variables: <b>N</b>, a vector of counts for each value of X,
            // initially zero
            double[] N = new double[ProbUtil
                .expectedSizeOfCategoricalDistribution(X)];
            // Z, the nonevidence variables in bn
            Set<RandomVariable> Z = new Set<RandomVariable>(
                bn.getVariablesInTopologicalOrder());
            foreach (AssignmentProposition ap in e)
            {
                Z.Remove(ap.getTermVariable());
            }
            // <b>x</b>, the current state of the network, initially copied from e
            Map<RandomVariable, Object> x = new LinkedHashMap<RandomVariable, Object>();
            foreach (AssignmentProposition ap in e)
            {
                x.Add(ap.getTermVariable(), ap.getValue());
            }

            // initialize <b>x</b> with random values for the variables in Z
            foreach (RandomVariable Zi in
            Z)
            {
                x.put(Zi, ProbUtil.randomSample(bn.getNode(Zi), x, randomizer));
            }

            // for j = 1 to N do
            for (int j = 0; j < Nsamples; j++)
            {
                // for each Z<sub>i</sub> in Z do
                foreach (RandomVariable Zi in
                Z)
                {
                    // set the value of Z<sub>i</sub> in <b>x</b> by sampling from
                    // <b>P</b>(Z<sub>i</sub>|mb(Z<sub>i</sub>))
                    x.put(Zi,
                          ProbUtil.mbRandomSample(bn.getNode(Zi), x, randomizer));
                }
                // Note: moving this outside the previous for loop,
                // as described in fig 14.6, as will only work
                // correctly in the case of a single query variable X.
                // However, when multiple query variables, rare events
                // will get weighted incorrectly if done above. In case
                // of single variable this does not happen as each possible
                // value gets * |Z| above, ending up with the same ratios
                // when normalized (i.e. its still more efficient to place
                // outside the loop).
                //
                // <b>N</b>[x] <- <b>N</b>[x] + 1
                // where x is the value of X in <b>x</b>
                N[ProbUtil.indexOf(X, x)] += 1.0;
            }
            // return NORMALIZE(<b>N</b>)
            return new ProbabilityTable(N, X).normalize();
        }