Org.BouncyCastle.Math.BigInteger.Remainder C# (CSharp) Method

Remainder() public method

public Remainder ( BigInteger n ) : BigInteger
n BigInteger
return BigInteger
		public BigInteger Remainder(
			BigInteger n)
		{
			if (n.sign == 0)
				throw new ArithmeticException("Division by zero error");

			if (this.sign == 0)
				return Zero;

			// For small values, use fast remainder method
			if (n.magnitude.Length == 1)
			{
				int val = n.magnitude[0];

				if (val > 0)
				{
					if (val == 1)
						return Zero;

					// TODO Make this func work on uint, and handle val == 1?
					int rem = Remainder(val);

					return rem == 0
						?	Zero
						:	new BigInteger(sign, new int[]{ rem }, false);
				}
			}

			if (CompareNoLeadingZeroes(0, magnitude, 0, n.magnitude) < 0)
				return this;

			int[] result;
			if (n.QuickPow2Check())  // n is power of two
			{
				// TODO Move before small values branch above?
				result = LastNBits(n.Abs().BitLength - 1);
			}
			else
			{
				result = (int[]) this.magnitude.Clone();
				result = Remainder(result, n.magnitude);
			}

			return new BigInteger(sign, result, true);
		}

Same methods

BigInteger::Remainder ( int m ) : int
BigInteger::Remainder ( int x, int y ) : int[]

Usage Example

Example #1
0
        /*
         * Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
         * 
         * (see: Handbook of Applied Cryptography 4.86)
         */
        internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
        {
            BigInteger p, q;
            int qLength = size - 1;
            int minWeight = size >> 2;

            if (size <= 32)
            {
                for (;;)
                {
                    q = new BigInteger(qLength, 2, random);

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (!p.IsProbablePrime(certainty))
                        continue;

                    if (certainty > 2 && !q.IsProbablePrime(certainty - 2))
                        continue;

                    break;
                }
            }
            else
            {
                // Note: Modified from Java version for speed
                for (;;)
                {
                    q = new BigInteger(qLength, 0, random);

                retry:
                    for (int i = 0; i < primeLists.Length; ++i)
                    {
                        int test = q.Remainder(BigPrimeProducts[i]).IntValue;

                        if (i == 0)
                        {
                            int rem3 = test % 3;
                            if (rem3 != 2)
                            {
                                int diff = 2 * rem3 + 2;
                                q = q.Add(BigInteger.ValueOf(diff));
                                test = (test + diff) % primeProducts[i];
                            }
                        }

                        int[] primeList = primeLists[i];
                        for (int j = 0; j < primeList.Length; ++j)
                        {
                            int prime = primeList[j];
                            int qRem = test % prime;
                            if (qRem == 0 || qRem == (prime >> 1))
                            {
                                q = q.Add(Six);
                                goto retry;
                            }
                        }
                    }

                    if (q.BitLength != qLength)
                        continue;

                    if (!q.RabinMillerTest(2, random))
                        continue;

                    p = q.ShiftLeft(1).Add(BigInteger.One);

                    if (!p.RabinMillerTest(certainty, random))
                        continue;

                    if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random))
                        continue;

                    /*
                     * Require a minimum weight of the NAF representation, since low-weight primes may be
                     * weak against a version of the number-field-sieve for the discrete-logarithm-problem.
                     * 
                     * See "The number field sieve for integers of low weight", Oliver Schirokauer.
                     */
                    if (WNafUtilities.GetNafWeight(p) < minWeight)
                        continue;

                    break;
                }
            }

            return new BigInteger[] { p, q };
        }
All Usage Examples Of Org.BouncyCastle.Math.BigInteger::Remainder