NetWrok.HTTP.Zlib.InfTree.huft_build C# (CSharp) Method

huft_build() private method

private huft_build ( int b, int bindex, int n, int s, int d, int e, int t, int m, int hp, int hn, int v ) : int
b int
bindex int
n int
s int
d int
e int
t int
m int
hp int
hn int
v int
return int
        private int huft_build(int[] b, int bindex, int n, int s, int[] d, int[] e, int[] t, int[] m, int[] hp, int[] hn, int[] v)
        {
            // Given a list of code lengths and a maximum table size, make a set of
            // tables to decode that set of codes.  Return Z_OK on success, Z_BUF_ERROR
            // if the given code set is incomplete (the tables are still built in this
            // case), Z_DATA_ERROR if the input is invalid (an over-subscribed set of
            // lengths), or Z_MEM_ERROR if not enough memory.

            int a; // counter for codes of length k
            int f; // i repeats in table every f entries
            int g; // maximum code length
            int h; // table level
            int i; // counter, current code
            int j; // counter
            int k; // number of bits in current code
            int l; // bits per table (returned in m)
            int mask; // (1 << w) - 1, to avoid cc -O bug on HP
            int p; // pointer into c[], b[], or v[]
            int q; // points to current table
            int w; // bits before this table == (l * h)
            int xp; // pointer into x
            int y; // number of dummy codes added
            int z; // number of entries in current table

            // Generate counts for each bit length

            p = 0; i = n;
            do
            {
                c[b[bindex + p]]++; p++; i--; // assume all entries <= BMAX
            }
            while (i != 0);

            if (c[0] == n)
            {
                // null input--all zero length codes
                t[0] = - 1;
                m[0] = 0;
                return Z_OK;
            }

            // Find minimum and maximum length, bound *m by those
            l = m[0];
            for (j = 1; j <= BMAX; j++)
                if (c[j] != 0)
                    break;
            k = j; // minimum code length
            if (l < j)
            {
                l = j;
            }
            for (i = BMAX; i != 0; i--)
            {
                if (c[i] != 0)
                    break;
            }
            g = i; // maximum code length
            if (l > i)
            {
                l = i;
            }
            m[0] = l;

            // Adjust last length count to fill out codes, if needed
            for (y = 1 << j; j < i; j++, y <<= 1)
            {
                if ((y -= c[j]) < 0)
                {
                    return Z_DATA_ERROR;
                }
            }
            if ((y -= c[i]) < 0)
            {
                return Z_DATA_ERROR;
            }
            c[i] += y;

            // Generate starting offsets into the value table for each length
            x[1] = j = 0;
            p = 1; xp = 2;
            while (--i != 0)
            {
                // note that i == g from above
                x[xp] = (j += c[p]);
                xp++;
                p++;
            }

            // Make a table of values in order of bit lengths
            i = 0; p = 0;
            do
            {
                if ((j = b[bindex + p]) != 0)
                {
                    v[x[j]++] = i;
                }
                p++;
            }
            while (++i < n);
            n = x[g]; // set n to length of v

            // Generate the Huffman codes and for each, make the table entries
            x[0] = i = 0; // first Huffman code is zero
            p = 0; // grab values in bit order
            h = - 1; // no tables yet--level -1
            w = - l; // bits decoded == (l * h)
            u[0] = 0; // just to keep compilers happy
            q = 0; // ditto
            z = 0; // ditto

            // go through the bit lengths (k already is bits in shortest code)
            for (; k <= g; k++)
            {
                a = c[k];
                while (a-- != 0)
                {
                    // here i is the Huffman code of length k bits for value *p
                    // make tables up to required level
                    while (k > w + l)
                    {
                        h++;
                        w += l; // previous table always l bits
                        // compute minimum size table less than or equal to l bits
                        z = g - w;
                        z = (z > l)?l:z; // table size upper limit
                        if ((f = 1 << (j = k - w)) > a + 1)
                        {
                            // try a k-w bit table
                            // too few codes for k-w bit table
                            f -= (a + 1); // deduct codes from patterns left
                            xp = k;
                            if (j < z)
                            {
                                while (++j < z)
                                {
                                    // try smaller tables up to z bits
                                    if ((f <<= 1) <= c[++xp])
                                        break; // enough codes to use up j bits
                                    f -= c[xp]; // else deduct codes from patterns
                                }
                            }
                        }
                        z = 1 << j; // table entries for j-bit table

                        // allocate new table
                        if (hn[0] + z > MANY)
                        {
                            // (note: doesn't matter for fixed)
                            return Z_DATA_ERROR; // overflow of MANY
                        }
                        u[h] = q = hn[0]; // DEBUG
                        hn[0] += z;

                        // connect to last table, if there is one
                        if (h != 0)
                        {
                            x[h] = i; // save pattern for backing up
                            r[0] = (sbyte) j; // bits in this table
                            r[1] = (sbyte) l; // bits to dump before this table
                            j = SharedUtils.URShift(i, (w - l));
                            r[2] = (int) (q - u[h - 1] - j); // offset to this table
                            Array.Copy(r, 0, hp, (u[h - 1] + j) * 3, 3); // connect to last table
                        }
                        else
                        {
                            t[0] = q; // first table is returned result
                        }
                    }

                    // set up table entry in r
                    r[1] = (sbyte) (k - w);
                    if (p >= n)
                    {
                        r[0] = 128 + 64; // out of values--invalid code
                    }
                    else if (v[p] < s)
                    {
                        r[0] = (sbyte) (v[p] < 256?0:32 + 64); // 256 is end-of-block
                        r[2] = v[p++]; // simple code is just the value
                    }
                    else
                    {
                        r[0] = (sbyte) (e[v[p] - s] + 16 + 64); // non-simple--look up in lists
                        r[2] = d[v[p++] - s];
                    }

                    // fill code-like entries with r
                    f = 1 << (k - w);
                    for (j = SharedUtils.URShift(i, w); j < z; j += f)
                    {
                        Array.Copy(r, 0, hp, (q + j) * 3, 3);
                    }

                    // backwards increment the k-bit code i
                    for (j = 1 << (k - 1); (i & j) != 0; j = SharedUtils.URShift(j, 1))
                    {
                        i ^= j;
                    }
                    i ^= j;

                    // backup over finished tables
                    mask = (1 << w) - 1; // needed on HP, cc -O bug
                    while ((i & mask) != x[h])
                    {
                        h--; // don't need to update q
                        w -= l;
                        mask = (1 << w) - 1;
                    }
                }
            }
            // Return Z_BUF_ERROR if we were given an incomplete table
            return y != 0 && g != 1?Z_BUF_ERROR:Z_OK;
        }