CSJ2K.j2k.entropy.encoder.StdEntropyCoder.magRefPass C# (CSharp) Method

magRefPass() static private method

Performs the magnitude refinement pass on the specified data and bit-plane. It codes the samples which are significant and which do not have the "visited" state bit turned on, using the MR primitive. The "visited" state bit is not mofified for any samples.
static private magRefPass ( CSJ2K.j2k.wavelet.analysis.CBlkWTData srcblk, MQCoder mq, bool doterm, int bp, int state, int fm, int symbuf, int ctxtbuf, int ratebuf, int pidx, int ltpidx, int options ) : int
srcblk CSJ2K.j2k.wavelet.analysis.CBlkWTData The code-block data to code /// ///
mq MQCoder The MQ-coder to use /// ///
doterm bool If true it performs an MQ-coder termination after the end /// of the pass /// ///
bp int The bit-plane to code /// ///
state int The state information for the code-block /// ///
fm int The distortion estimation lookup table for MR /// ///
symbuf int The buffer to hold symbols to send to the MQ coder /// ///
ctxtbuf int A buffer to hold the contexts to use in sending the /// buffered symbols to the MQ coder. /// ///
ratebuf int The buffer where to store the rate (i.e. coded lenth) at /// the end of this coding pass. /// ///
pidx int The coding pass index. Is the index in the 'ratebuf' array /// where to store the coded length after this coding pass. /// ///
ltpidx int The index of the last pass that was terminated, or /// negative if none. /// ///
options int The bitmask of entropy coding options to apply to the /// code-block /// ///
return int
		static private int magRefPass(CBlkWTData srcblk, MQCoder mq, bool doterm, int bp, int[] state, int[] fm, int[] symbuf, int[] ctxtbuf, int[] ratebuf, int pidx, int ltpidx, int options)
		{
			int j, sj; // The state index for line and stripe
			int k, sk; // The data index for line and stripe
			int nsym = 0; // Symbol counter for symbol and context buffers
			int dscanw; // The data scan-width
			int sscanw; // The state scan-width
			int jstep; // Stripe to stripe step for 'sj'
			int kstep; // Stripe to stripe step for 'sk'
			int stopsk; // The loop limit on the variable sk
			int csj; // Local copy (i.e. cached) of 'state[j]'
			int mask; // The mask for the current bit-plane
			int[] data; // The data buffer
			int dist; // The distortion reduction for this pass
			int shift; // Shift amount for distortion
			int upshift; // Shift left amount for distortion
			int downshift; // Shift right amount for distortion
			int normval; // The normalized sample magnitude value
			int s; // The stripe index
			int nstripes; // The number of stripes in the code-block
			int sheight; // Height of the current stripe
			
			// Initialize local variables
			dscanw = srcblk.scanw;
			sscanw = srcblk.w + 2;
			jstep = sscanw * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT / 2 - srcblk.w;
			kstep = dscanw * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT - srcblk.w;
			mask = 1 << bp;
			data = (int[]) srcblk.Data;
			nstripes = (srcblk.h + CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT - 1) / CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT;
			dist = 0;
			// We use the bit just coded plus MSE_LKP_BITS-1 bits below the bit
			// just coded for distortion estimation.
			shift = bp - (MSE_LKP_BITS - 1);
			upshift = (shift >= 0)?0:- shift;
			downshift = (shift <= 0)?0:shift;
			
			// Code stripe by stripe
			sk = srcblk.offset;
			sj = sscanw + 1;
			for (s = nstripes - 1; s >= 0; s--, sk += kstep, sj += jstep)
			{
				sheight = (s != 0)?CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT:srcblk.h - (nstripes - 1) * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT;
				stopsk = sk + srcblk.w;
				// Scan by set of 1 stripe column at a time
				for (nsym = 0; sk < stopsk; sk++, sj++)
				{
					// Do half top of column
					j = sj;
					csj = state[j];
					// If any of the two samples is significant and not yet
					// visited in the current bit-plane we can not skip them
					if ((((SupportClass.URShift(csj, 1)) & (~ csj)) & VSTD_MASK_R1R2) != 0)
					{
						k = sk;
						// Scan first row
						if ((csj & (STATE_SIG_R1 | STATE_VISITED_R1)) == STATE_SIG_R1)
						{
							// Apply MR primitive
							symbuf[nsym] = SupportClass.URShift((data[k] & mask), bp);
							ctxtbuf[nsym++] = MR_LUT[csj & MR_MASK];
							// Update the STATE_PREV_MR bit
							csj |= STATE_PREV_MR_R1;
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fm[normval & ((1 << MSE_LKP_BITS) - 1)];
						}
						if (sheight < 2)
						{
							state[j] = csj;
							continue;
						}
						// Scan second row
						if ((csj & (STATE_SIG_R2 | STATE_VISITED_R2)) == STATE_SIG_R2)
						{
							k += dscanw;
							// Apply MR primitive
							symbuf[nsym] = SupportClass.URShift((data[k] & mask), bp);
							ctxtbuf[nsym++] = MR_LUT[(SupportClass.URShift(csj, STATE_SEP)) & MR_MASK];
							// Update the STATE_PREV_MR bit
							csj |= STATE_PREV_MR_R2;
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fm[normval & ((1 << MSE_LKP_BITS) - 1)];
						}
						state[j] = csj;
					}
					// Do half bottom of column
					if (sheight < 3)
						continue;
					j += sscanw;
					csj = state[j];
					// If any of the two samples is significant and not yet
					// visited in the current bit-plane we can not skip them
					if ((((SupportClass.URShift(csj, 1)) & (~ csj)) & VSTD_MASK_R1R2) != 0)
					{
						k = sk + (dscanw << 1);
						// Scan first row
						if ((csj & (STATE_SIG_R1 | STATE_VISITED_R1)) == STATE_SIG_R1)
						{
							// Apply MR primitive
							symbuf[nsym] = SupportClass.URShift((data[k] & mask), bp);
							ctxtbuf[nsym++] = MR_LUT[csj & MR_MASK];
							// Update the STATE_PREV_MR bit
							csj |= STATE_PREV_MR_R1;
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fm[normval & ((1 << MSE_LKP_BITS) - 1)];
						}
						if (sheight < 4)
						{
							state[j] = csj;
							continue;
						}
						// Scan second row
						if ((state[j] & (STATE_SIG_R2 | STATE_VISITED_R2)) == STATE_SIG_R2)
						{
							k += dscanw;
							// Apply MR primitive
							symbuf[nsym] = SupportClass.URShift((data[k] & mask), bp);
							ctxtbuf[nsym++] = MR_LUT[(SupportClass.URShift(csj, STATE_SEP)) & MR_MASK];
							// Update the STATE_PREV_MR bit
							csj |= STATE_PREV_MR_R2;
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fm[normval & ((1 << MSE_LKP_BITS) - 1)];
						}
						state[j] = csj;
					}
				}
				// Code all buffered symbols, if any
				if (nsym > 0)
					mq.codeSymbols(symbuf, ctxtbuf, nsym);
			}
			
			// Reset the MQ context states if we need to
			if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_RESET_MQ) != 0)
			{
				mq.resetCtxts();
			}
			
			// Terminate the MQ bit stream if we need to
			if (doterm)
			{
				ratebuf[pidx] = mq.terminate(); // Termination has special length
			}
			else
			{
				// Use normal length calculation
				ratebuf[pidx] = mq.NumCodedBytes;
			}
			// Add length of previous segments, if any
			if (ltpidx >= 0)
			{
				ratebuf[pidx] += ratebuf[ltpidx];
			}
			// Finish length calculation if needed
			if (doterm)
			{
				mq.finishLengthCalculation(ratebuf, pidx);
			}
			
			// Return the reduction in distortion
			return dist;
		}