BitSharper.Transaction.AddOutput C# (CSharp) Method

AddOutput() public method

Adds the given output to this transaction. The output must be completely initialized.
public AddOutput ( TransactionOutput to ) : void
to TransactionOutput
return void
        public void AddOutput(TransactionOutput to)
        {
            to.ParentTransaction = this;
            _outputs.Add(to);
        }

Usage Example

        /// <summary>
        /// Creates a transaction that sends $coins.$cents BTC to the given address.
        /// </summary>
        /// <remarks>
        /// IMPORTANT: This method does NOT update the wallet. If you call createSend again you may get two transactions
        /// that spend the same coins. You have to call confirmSend on the created transaction to prevent this,
        /// but that should only occur once the transaction has been accepted by the network. This implies you cannot have
        /// more than one outstanding sending tx at once.
        /// </remarks>
        /// <param name="address">The BitCoin address to send the money to.</param>
        /// <param name="nanocoins">How much currency to send, in nanocoins.</param>
        /// <param name="changeAddress">
        /// Which address to send the change to, in case we can't make exactly the right value from
        /// our coins. This should be an address we own (is in the keychain).
        /// </param>
        /// <returns>
        /// A new <see cref="Transaction"/> or null if we cannot afford this send.
        /// </returns>
        internal Transaction CreateSend(Address address, ulong nanocoins, Address changeAddress)
        {
            lock (this)
            {
                _log.Info("Creating send tx to " + address + " for " +
                          Utils.BitcoinValueToFriendlyString(nanocoins));
                // To send money to somebody else, we need to do gather up transactions with unspent outputs until we have
                // sufficient value. Many coin selection algorithms are possible, we use a simple but suboptimal one.
                // TODO: Sort coins so we use the smallest first, to combat wallet fragmentation and reduce fees.
                var valueGathered = 0UL;
                var gathered = new LinkedList<TransactionOutput>();
                foreach (var tx in Unspent.Values)
                {
                    foreach (var output in tx.Outputs)
                    {
                        if (!output.IsAvailableForSpending) continue;
                        if (!output.IsMine(this)) continue;
                        gathered.AddLast(output);
                        valueGathered += output.Value;
                    }
                    if (valueGathered >= nanocoins) break;
                }
                // Can we afford this?
                if (valueGathered < nanocoins)
                {
                    _log.Info("Insufficient value in wallet for send, missing " +
                              Utils.BitcoinValueToFriendlyString(nanocoins - valueGathered));
                    // TODO: Should throw an exception here.
                    return null;
                }
                Debug.Assert(gathered.Count > 0);
                var sendTx = new Transaction(_params);
                sendTx.AddOutput(new TransactionOutput(_params, sendTx, nanocoins, address));
                var change = (long) (valueGathered - nanocoins);
                if (change > 0)
                {
                    // The value of the inputs is greater than what we want to send. Just like in real life then,
                    // we need to take back some coins ... this is called "change". Add another output that sends the change
                    // back to us.
                    _log.Info("  with " + Utils.BitcoinValueToFriendlyString((ulong) change) + " coins change");
                    sendTx.AddOutput(new TransactionOutput(_params, sendTx, (ulong) change, changeAddress));
                }
                foreach (var output in gathered)
                {
                    sendTx.AddInput(output);
                }

                // Now sign the inputs, thus proving that we are entitled to redeem the connected outputs.
                sendTx.SignInputs(Transaction.SigHash.All, this);
                _log.InfoFormat("  created {0}", sendTx.HashAsString);
                return sendTx;
            }
        }
All Usage Examples Of BitSharper.Transaction::AddOutput