CSJ2K.j2k.entropy.encoder.StdEntropyCoder.cleanuppass C# (CSharp) Method

cleanuppass() static private method

Performs the cleanup pass on the specified data and bit-plane. It codes all insignificant samples which have its "visited" state bit off, using the ZC, SC, and RLC primitives. It toggles the "visited" state bit to 0 (off) for all samples in the code-block.
static private cleanuppass ( CSJ2K.j2k.wavelet.analysis.CBlkWTData srcblk, MQCoder mq, bool doterm, int bp, int state, int fs, int zc_lut, int symbuf, int ctxtbuf, int ratebuf, int pidx, int ltpidx, int options ) : int
srcblk CSJ2K.j2k.wavelet.analysis.CBlkWTData The code-block data to code /// ///
mq MQCoder The MQ-coder to use /// ///
doterm bool If true it performs an MQ-coder termination after the end /// of the pass /// ///
bp int The bit-plane to code /// ///
state int The state information for the code-block /// ///
fs int The distortion estimation lookup table for SC /// ///
zc_lut int The ZC lookup table to use in ZC. /// ///
symbuf int The buffer to hold symbols to send to the MQ coder /// ///
ctxtbuf int A buffer to hold the contexts to use in sending the /// buffered symbols to the MQ coder. /// ///
ratebuf int The buffer where to store the rate (i.e. coded lenth) at /// the end of this coding pass. /// ///
pidx int The coding pass index. Is the index in the 'ratebuf' array /// where to store the coded length after this coding pass. /// ///
ltpidx int The index of the last pass that was terminated, or /// negative if none. /// ///
options int The bitmask of entropy coding options to apply to the /// code-block /// ///
return int
		static private int cleanuppass(CBlkWTData srcblk, MQCoder mq, bool doterm, int bp, int[] state, int[] fs, int[] zc_lut, int[] symbuf, int[] ctxtbuf, int[] ratebuf, int pidx, int ltpidx, int options)
		{
			// NOTE: The speedup mode of the MQ coder has been briefly tried to
			// speed up the coding of insignificants RLCs, without any success
			// (i.e. no speedup whatsoever). The use of the speedup mode should be
			// revisisted more in depth and the implementationn of it in MQCoder
			// should be reviewed for optimization opportunities.
			int j, sj; // The state index for line and stripe
			int k, sk; // The data index for line and stripe
			int nsym = 0; // Symbol counter for symbol and context buffers
			int dscanw; // The data scan-width
			int sscanw; // The state scan-width
			int jstep; // Stripe to stripe step for 'sj'
			int kstep; // Stripe to stripe step for 'sk'
			int stopsk; // The loop limit on the variable sk
			int csj; // Local copy (i.e. cached) of 'state[j]'
			int mask; // The mask for the current bit-plane
			int sym; // The symbol to code
			int rlclen; // Length of RLC
			int ctxt; // The context to use
			int[] data; // The data buffer
			int dist; // The distortion reduction for this pass
			int shift; // Shift amount for distortion
			int upshift; // Shift left amount for distortion
			int downshift; // Shift right amount for distortion
			int normval; // The normalized sample magnitude value
			int s; // The stripe index
			bool causal; // Flag to indicate if stripe-causal context
			// formation is to be used
			int nstripes; // The number of stripes in the code-block
			int sheight; // Height of the current stripe
			int off_ul, off_ur, off_dr, off_dl; // offsets
			
			// Initialize local variables
			dscanw = srcblk.scanw;
			sscanw = srcblk.w + 2;
			jstep = sscanw * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT / 2 - srcblk.w;
			kstep = dscanw * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT - srcblk.w;
			mask = 1 << bp;
			data = (int[]) srcblk.Data;
			nstripes = (srcblk.h + CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT - 1) / CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT;
			dist = 0;
			// We use the MSE_LKP_BITS-1 bits below the bit just coded for
			// distortion estimation.
			shift = bp - (MSE_LKP_BITS - 1);
			upshift = (shift >= 0)?0:- shift;
			downshift = (shift <= 0)?0:shift;
			causal = (options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_VERT_STR_CAUSAL) != 0;
			
			// Pre-calculate offsets in 'state' for diagonal neighbors
			off_ul = - sscanw - 1; // up-left
			off_ur = - sscanw + 1; // up-right
			off_dr = sscanw + 1; // down-right
			off_dl = sscanw - 1; // down-left
			
			// Code stripe by stripe
			sk = srcblk.offset;
			sj = sscanw + 1;
			for (s = nstripes - 1; s >= 0; s--, sk += kstep, sj += jstep)
			{
				sheight = (s != 0)?CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT:srcblk.h - (nstripes - 1) * CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT;
				stopsk = sk + srcblk.w;
				// Scan by set of 1 stripe column at a time
				for (nsym = 0; sk < stopsk; sk++, sj++)
				{
					// Start column
					j = sj;
					csj = state[j];
					{
						// Check for RLC: if all samples are not significant, not
						// visited and do not have a non-zero context, and column
						// is full height, we do RLC.
						if (csj == 0 && state[j + sscanw] == 0 && sheight == CSJ2K.j2k.entropy.StdEntropyCoderOptions.STRIPE_HEIGHT)
						{
							k = sk;
							if ((data[k] & mask) != 0)
							{
								rlclen = 0;
							}
							else if ((data[k += dscanw] & mask) != 0)
							{
								rlclen = 1;
							}
							else if ((data[k += dscanw] & mask) != 0)
							{
								rlclen = 2;
								j += sscanw;
								csj = state[j];
							}
							else if ((data[k += dscanw] & mask) != 0)
							{
								rlclen = 3;
								j += sscanw;
								csj = state[j];
							}
							else
							{
								// Code insignificant RLC
								symbuf[nsym] = 0;
								ctxtbuf[nsym++] = RLC_CTXT;
								// Goto next column
								continue;
							}
							// Code significant RLC
							symbuf[nsym] = 1;
							ctxtbuf[nsym++] = RLC_CTXT;
							// Send MSB bit index
							symbuf[nsym] = rlclen >> 1;
							ctxtbuf[nsym++] = UNIF_CTXT;
							// Send LSB bit index
							symbuf[nsym] = rlclen & 0x01;
							ctxtbuf[nsym++] = UNIF_CTXT;
							// Code sign of sample that became significant
							// Update distortion
							normval = (data[k] >> downshift) << upshift;
							dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
							// Apply sign coding
							sym = SupportClass.URShift(data[k], 31);
							if ((rlclen & 0x01) == 0)
							{
								// Sample that became significant is first row of
								// its column half
								ctxt = SC_LUT[(SupportClass.URShift(csj, SC_SHIFT_R1)) & SC_MASK];
								symbuf[nsym] = sym ^ (SupportClass.URShift(ctxt, SC_SPRED_SHIFT));
								ctxtbuf[nsym++] = ctxt & SC_LUT_MASK;
								// Update state information (significant bit,
								// visited bit, neighbor significant bit of
								// neighbors, non zero context of neighbors, sign
								// of neighbors)
								if (rlclen != 0 || !causal)
								{
									// If in causal mode do not change contexts of 
									// previous stripe.
									state[j + off_ul] |= STATE_NZ_CTXT_R2 | STATE_D_DR_R2;
									state[j + off_ur] |= STATE_NZ_CTXT_R2 | STATE_D_DL_R2;
								}
								// Update sign state information of neighbors
								if (sym != 0)
								{
									csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2 | STATE_V_U_SIGN_R2;
									if (rlclen != 0 || !causal)
									{
										// If in causal mode do not change
										// contexts of previous stripe.
										state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2 | STATE_V_D_SIGN_R2;
									}
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_H_L_SIGN_R1 | STATE_D_UL_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_H_R_SIGN_R1 | STATE_D_UR_R2;
								}
								else
								{
									csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2;
									if (rlclen != 0 || !causal)
									{
										// If in causal mode do not change
										// contexts of previous stripe.
										state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2;
									}
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_D_UL_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_D_UR_R2;
								}
								// Changes to csj are saved later
								if ((rlclen >> 1) != 0)
								{
									// Sample that became significant is in bottom
									// half of column => jump to bottom half
									//UPGRADE_NOTE: Labeled break statement was changed to a goto statement. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1012'"
									goto top_half_brk;
								}
								// Otherwise sample that became significant is in
								// top half of column => continue on top half
							}
							else
							{
								// Sample that became significant is second row of
								// its column half
								ctxt = SC_LUT[(SupportClass.URShift(csj, SC_SHIFT_R2)) & SC_MASK];
								symbuf[nsym] = sym ^ (SupportClass.URShift(ctxt, SC_SPRED_SHIFT));
								ctxtbuf[nsym++] = ctxt & SC_LUT_MASK;
								// Update state information (significant bit,
								// neighbor significant bit of neighbors, non zero
								// context of neighbors, sign of neighbors)
								state[j + off_dl] |= STATE_NZ_CTXT_R1 | STATE_D_UR_R1;
								state[j + off_dr] |= STATE_NZ_CTXT_R1 | STATE_D_UL_R1;
								// Update sign state information of neighbors
								if (sym != 0)
								{
									csj |= STATE_SIG_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1 | STATE_V_D_SIGN_R1;
									state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1 | STATE_V_U_SIGN_R1;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2 | STATE_H_L_SIGN_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2 | STATE_H_R_SIGN_R2;
								}
								else
								{
									csj |= STATE_SIG_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1;
									state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2;
								}
								// Save changes to csj
								state[j] = csj;
								if ((rlclen >> 1) != 0)
								{
									// Sample that became significant is in bottom
									// half of column => we're done with this
									// column
									continue;
								}
								// Otherwise sample that became significant is in
								// top half of column => we're done with top
								// column
								j += sscanw;
								csj = state[j];
								//UPGRADE_NOTE: Labeled break statement was changed to a goto statement. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1012'"
								goto top_half_brk;
							}
						}
						// Do half top of column
						// If any of the two samples is not significant and has
						// not been visited in the current bit-plane we can not
						// skip them
						if ((((csj >> 1) | csj) & VSTD_MASK_R1R2) != VSTD_MASK_R1R2)
						{
							k = sk;
							// Scan first row
							if ((csj & (STATE_SIG_R1 | STATE_VISITED_R1)) == 0)
							{
								// Apply zero coding
								ctxtbuf[nsym] = zc_lut[csj & ZC_MASK];
								if ((symbuf[nsym++] = SupportClass.URShift((data[k] & mask), bp)) != 0)
								{
									// Became significant
									// Apply sign coding
									sym = SupportClass.URShift(data[k], 31);
									ctxt = SC_LUT[(SupportClass.URShift(csj, SC_SHIFT_R1)) & SC_MASK];
									symbuf[nsym] = sym ^ (SupportClass.URShift(ctxt, SC_SPRED_SHIFT));
									ctxtbuf[nsym++] = ctxt & SC_LUT_MASK;
									// Update state information (significant bit,
									// visited bit, neighbor significant bit of
									// neighbors, non zero context of neighbors,
									// sign of neighbors)
									if (!causal)
									{
										// If in causal mode do not change
										// contexts of previous stripe.
										state[j + off_ul] |= STATE_NZ_CTXT_R2 | STATE_D_DR_R2;
										state[j + off_ur] |= STATE_NZ_CTXT_R2 | STATE_D_DL_R2;
									}
									// Update sign state information of neighbors
									if (sym != 0)
									{
										csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2 | STATE_V_U_SIGN_R2;
										if (!causal)
										{
											// If in causal mode do not change
											// contexts of previous stripe.
											state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2 | STATE_V_D_SIGN_R2;
										}
										state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_H_L_SIGN_R1 | STATE_D_UL_R2;
										state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_H_R_SIGN_R1 | STATE_D_UR_R2;
									}
									else
									{
										csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2;
										if (!causal)
										{
											// If in causal mode do not change
											// contexts of previous stripe.
											state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2;
										}
										state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_D_UL_R2;
										state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_D_UR_R2;
									}
									// Update distortion
									normval = (data[k] >> downshift) << upshift;
									dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
								}
							}
							if (sheight < 2)
							{
								csj &= ~ (STATE_VISITED_R1 | STATE_VISITED_R2);
								state[j] = csj;
								continue;
							}
							// Scan second row
							if ((csj & (STATE_SIG_R2 | STATE_VISITED_R2)) == 0)
							{
								k += dscanw;
								// Apply zero coding
								ctxtbuf[nsym] = zc_lut[(SupportClass.URShift(csj, STATE_SEP)) & ZC_MASK];
								if ((symbuf[nsym++] = SupportClass.URShift((data[k] & mask), bp)) != 0)
								{
									// Became significant
									// Apply sign coding
									sym = SupportClass.URShift(data[k], 31);
									ctxt = SC_LUT[(SupportClass.URShift(csj, SC_SHIFT_R2)) & SC_MASK];
									symbuf[nsym] = sym ^ (SupportClass.URShift(ctxt, SC_SPRED_SHIFT));
									ctxtbuf[nsym++] = ctxt & SC_LUT_MASK;
									// Update state information (significant bit,
									// visited bit, neighbor significant bit of
									// neighbors, non zero context of neighbors,
									// sign of neighbors)
									state[j + off_dl] |= STATE_NZ_CTXT_R1 | STATE_D_UR_R1;
									state[j + off_dr] |= STATE_NZ_CTXT_R1 | STATE_D_UL_R1;
									// Update sign state information of neighbors
									if (sym != 0)
									{
										csj |= STATE_SIG_R2 | STATE_VISITED_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1 | STATE_V_D_SIGN_R1;
										state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1 | STATE_V_U_SIGN_R1;
										state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2 | STATE_H_L_SIGN_R2;
										state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2 | STATE_H_R_SIGN_R2;
									}
									else
									{
										csj |= STATE_SIG_R2 | STATE_VISITED_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1;
										state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1;
										state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2;
										state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2;
									}
									// Update distortion
									normval = (data[k] >> downshift) << upshift;
									dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
								}
							}
						}
						csj &= ~ (STATE_VISITED_R1 | STATE_VISITED_R2);
						state[j] = csj;
						// Do half bottom of column
						if (sheight < 3)
							continue;
						j += sscanw;
						csj = state[j];
					}
					//UPGRADE_NOTE: Label 'top_half_brk' was added. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index='!DefaultContextWindowIndex'&keyword='jlca1011'"

top_half_brk: ;
					 // end of 'top_half' block
					// If any of the two samples is not significant and has
					// not been visited in the current bit-plane we can not
					// skip them
					if ((((csj >> 1) | csj) & VSTD_MASK_R1R2) != VSTD_MASK_R1R2)
					{
						k = sk + (dscanw << 1);
						// Scan first row
						if ((csj & (STATE_SIG_R1 | STATE_VISITED_R1)) == 0)
						{
							// Apply zero coding
							ctxtbuf[nsym] = zc_lut[csj & ZC_MASK];
							if ((symbuf[nsym++] = SupportClass.URShift((data[k] & mask), bp)) != 0)
							{
								// Became significant
								// Apply sign coding
								sym = SupportClass.URShift(data[k], 31);
								ctxt = SC_LUT[(SupportClass.URShift(csj, SC_SHIFT_R1)) & SC_MASK];
								symbuf[nsym] = sym ^ (SupportClass.URShift(ctxt, SC_SPRED_SHIFT));
								ctxtbuf[nsym++] = ctxt & SC_LUT_MASK;
								// Update state information (significant bit,
								// visited bit, neighbor significant bit of
								// neighbors, non zero context of neighbors,
								// sign of neighbors)
								state[j + off_ul] |= STATE_NZ_CTXT_R2 | STATE_D_DR_R2;
								state[j + off_ur] |= STATE_NZ_CTXT_R2 | STATE_D_DL_R2;
								// Update sign state information of neighbors
								if (sym != 0)
								{
									csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2 | STATE_V_U_SIGN_R2;
									state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2 | STATE_V_D_SIGN_R2;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_H_L_SIGN_R1 | STATE_D_UL_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_H_R_SIGN_R1 | STATE_D_UR_R2;
								}
								else
								{
									csj |= STATE_SIG_R1 | STATE_VISITED_R1 | STATE_NZ_CTXT_R2 | STATE_V_U_R2;
									state[j - sscanw] |= STATE_NZ_CTXT_R2 | STATE_V_D_R2;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_L_R1 | STATE_D_UL_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_H_R_R1 | STATE_D_UR_R2;
								}
								// Update distortion
								normval = (data[k] >> downshift) << upshift;
								dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
							}
						}
						if (sheight < 4)
						{
							csj &= ~ (STATE_VISITED_R1 | STATE_VISITED_R2);
							state[j] = csj;
							continue;
						}
						// Scan second row
						if ((csj & (STATE_SIG_R2 | STATE_VISITED_R2)) == 0)
						{
							k += dscanw;
							// Apply zero coding
							ctxtbuf[nsym] = zc_lut[(SupportClass.URShift(csj, STATE_SEP)) & ZC_MASK];
							if ((symbuf[nsym++] = SupportClass.URShift((data[k] & mask), bp)) != 0)
							{
								// Became significant
								// Apply sign coding
								sym = SupportClass.URShift(data[k], 31);
								ctxt = SC_LUT[(SupportClass.URShift(csj, SC_SHIFT_R2)) & SC_MASK];
								symbuf[nsym] = sym ^ (SupportClass.URShift(ctxt, SC_SPRED_SHIFT));
								ctxtbuf[nsym++] = ctxt & SC_LUT_MASK;
								// Update state information (significant bit,
								// visited bit, neighbor significant bit of
								// neighbors, non zero context of neighbors,
								// sign of neighbors)
								state[j + off_dl] |= STATE_NZ_CTXT_R1 | STATE_D_UR_R1;
								state[j + off_dr] |= STATE_NZ_CTXT_R1 | STATE_D_UL_R1;
								// Update sign state information of neighbors
								if (sym != 0)
								{
									csj |= STATE_SIG_R2 | STATE_VISITED_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1 | STATE_V_D_SIGN_R1;
									state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1 | STATE_V_U_SIGN_R1;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2 | STATE_H_L_SIGN_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2 | STATE_H_R_SIGN_R2;
								}
								else
								{
									csj |= STATE_SIG_R2 | STATE_VISITED_R2 | STATE_NZ_CTXT_R1 | STATE_V_D_R1;
									state[j + sscanw] |= STATE_NZ_CTXT_R1 | STATE_V_U_R1;
									state[j + 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DL_R1 | STATE_H_L_R2;
									state[j - 1] |= STATE_NZ_CTXT_R1 | STATE_NZ_CTXT_R2 | STATE_D_DR_R1 | STATE_H_R_R2;
								}
								// Update distortion
								normval = (data[k] >> downshift) << upshift;
								dist += fs[normval & ((1 << (MSE_LKP_BITS - 1)) - 1)];
							}
						}
					}
					csj &= ~ (STATE_VISITED_R1 | STATE_VISITED_R2);
					state[j] = csj;
				}
				// Code all buffered symbols, if any
				if (nsym > 0)
					mq.codeSymbols(symbuf, ctxtbuf, nsym);
			}
			
			// Insert a segment marker if we need to
			if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_SEG_SYMBOLS) != 0)
			{
				mq.codeSymbols(SEG_SYMBOLS, SEG_SYMB_CTXTS, SEG_SYMBOLS.Length);
			}
			
			// Reset the MQ context states if we need to
			if ((options & CSJ2K.j2k.entropy.StdEntropyCoderOptions.OPT_RESET_MQ) != 0)
			{
				mq.resetCtxts();
			}
			
			// Terminate the MQ bit stream if we need to
			if (doterm)
			{
				ratebuf[pidx] = mq.terminate(); // Termination has special length
			}
			else
			{
				// Use normal length calculation
				ratebuf[pidx] = mq.NumCodedBytes;
			}
			// Add length of previous segments, if any
			if (ltpidx >= 0)
			{
				ratebuf[pidx] += ratebuf[ltpidx];
			}
			// Finish length calculation if needed
			if (doterm)
			{
				mq.finishLengthCalculation(ratebuf, pidx);
			}
			// Return the reduction in distortion
			return dist;
		}