Accord.Tests.MachineLearning.NaiveBayesGenericTest.learn_test_mitchell C# (CSharp) Method

learn_test_mitchell() private method

private learn_test_mitchell ( ) : void
return void
        public void learn_test_mitchell()
        {
            #region doc_mitchell_1
            // We will represent Mitchell's Tennis example using a DataTable. However,
            // the use of a DataTable is not required in order to use the Naive Bayes. 
            // Please take a look at the other examples below for simpler approaches.
            DataTable data = new DataTable("Mitchell's Tennis Example");
            data.Columns.Add("Day", "Outlook", "Temperature", "Humidity", "Wind", "PlayTennis");
            // We will set Temperature and Humidity to be continuous
            data.Columns["Temperature"].DataType = typeof(double);
            data.Columns["Humidity"].DataType = typeof(double);
            // Add some data
            data.Rows.Add("D1", "Sunny", 38.0, 96.0, "Weak", "No");
            data.Rows.Add("D2", "Sunny", 39.0, 90.0, "Strong", "No");
            data.Rows.Add("D3", "Overcast", 38.0, 75.0, "Weak", "Yes");
            data.Rows.Add("D4", "Rain", 25.0, 87.0, "Weak", "Yes");
            data.Rows.Add("D5", "Rain", 12.0, 30.0, "Weak", "Yes");
            data.Rows.Add("D6", "Rain", 11.0, 35.0, "Strong", "No");
            data.Rows.Add("D7", "Overcast", 10.0, 40.0, "Strong", "Yes");
            data.Rows.Add("D8", "Sunny", 24.0, 90.0, "Weak", "No");
            data.Rows.Add("D9", "Sunny", 12.0, 26.0, "Weak", "Yes");
            data.Rows.Add("D10", "Rain", 25, 30.0, "Weak", "Yes");
            data.Rows.Add("D11", "Sunny", 26.0, 40.0, "Strong", "Yes");
            data.Rows.Add("D12", "Overcast", 27.0, 97.0, "Strong", "Yes");
            data.Rows.Add("D13", "Overcast", 39.0, 41.0, "Weak", "Yes");
            data.Rows.Add("D14", "Rain", 23.0, 98.0, "Strong", "No");
            #endregion

            #region doc_mitchell_2
            // Create a new codification codebook to
            // convert strings into discrete symbols
            Codification codebook = new Codification(data);
            #endregion

            #region doc_mitchell_3
            // Some distributions require constructor parameters, and as such, cannot 
            // be automatically initialized by the learning algorithm. For this reason, 
            // we might need to specify how each component should be initialized:
            IUnivariateFittableDistribution[] priors =
            {
                new GeneralDiscreteDistribution(codebook["Outlook"].Symbols),   // 3 possible values (Sunny, overcast, rain)
                new NormalDistribution(),                                       // Continuous value (Celsius)
                new NormalDistribution(),                                       // Continuous value (percentage)
                new GeneralDiscreteDistribution(codebook["Wind"].Symbols)       // 2 possible values (Weak, strong)
            };

            // Create a new Naive Bayes classifiers for the two classes
            var learner = new NaiveBayesLearning<IUnivariateFittableDistribution>()
            {
                // Tell the learner how to initialize the distributions
                Distribution = (classIndex, variableIndex) => priors[variableIndex]
            };

            // Extract symbols from data and train the classifier
            DataTable symbols = codebook.Apply(data);
            double[][] inputs = symbols.ToArray("Outlook", "Temperature", "Humidity", "Wind");
            int[] outputs = symbols.ToArray<int>("PlayTennis");

            // Learn the Naive Bayes model
            var naiveBayes = learner.Learn(inputs, outputs);
            #endregion

            #region doc_mitchell_4
            // Create an instance representing a "sunny, cool, humid and windy day":
            double[] instance = new double[] 
            {
                codebook.Translate(columnName:"Outlook", value:"Sunny"), //n 0
                12.0, 
                90.0,
                codebook.Translate(columnName:"Wind", value:"Strong") // 1
            };

            // We can obtain a class prediction using
            int predicted = naiveBayes.Decide(instance);

            // Or compute probabilities of each class using
            double[] probabilities = naiveBayes.Probabilities(instance);

            // Or obtain the log-likelihood of prediction
            double ll = naiveBayes.LogLikelihood(instance);

            // Finally, the result can be translated back using
            string result = codebook.Translate("PlayTennis", predicted); // Should be "No"
            #endregion

            Assert.AreEqual("No", result);
            Assert.AreEqual(0, predicted);
            Assert.AreEqual(0.840, probabilities[0], 1e-3);
            Assert.AreEqual(-10.493243476691351, ll, 1e-6);
            Assert.AreEqual(1, probabilities.Sum(), 1e-10);
            Assert.AreEqual(2, probabilities.Length);
        }